Targeting histone deacetylase activity in rheumatoid arthritis and asthma as prototypes of inflammatory disease: should we keep our HATs on?
نویسندگان
چکیده
Cellular activation, proliferation and survival in chronic inflammatory diseases is regulated not only by engagement of signal trans-duction pathways that modulate transcription factors required for these processes, but also by epigenetic regulation of transcription factor access to gene promoter regions. Histone acetyl transferases coordinate the recruitment and activation of transcription factors with conformational changes in histones that allow gene promoter exposure. Histone deacetylases (HDACs) counteract histone acetyl transferase activity through the targeting of both histones as well as nonhistone signal transduction proteins important in inflammation. Numerous studies have indicated that depressed HDAC activity in patients with inflammatory airway diseases may contribute to local proinflammatory cytokine production and diminish patient responses to corticosteroid treatment. Recent observations that HDAC activity is depressed in rheumatoid arthritis patient synovial tissue have predicted that strategies restoring HDAC function may be therapeutic in this disease as well. Pharmacological inhibitors of HDAC activity, however, have demonstrated potent therapeutic effects in animal models of arthritis and other chronic inflammatory diseases. In the present review we assess and reconcile these outwardly paradoxical study results to provide a working model for how alterations in HDAC activity may contribute to pathology in rheumatoid arthritis, and highlight key questions to be answered in the preclinical evaluation of compounds modulating these enzymes.
منابع مشابه
Histone deacetylase inhibitors suppress inflammatory activation of rheumatoid arthritis patient synovial macrophages and tissue.
Macrophages contribute significantly to the pathology of many chronic inflammatory diseases, including rheumatoid arthritis (RA), asthma, and chronic obstructive pulmonary disease. Macrophage activation and survival are tightly regulated by reversible acetylation and deacetylation of histones, transcription factors, and structural proteins. Although histone deacetylase (HDAC) inhibitors (HDACis...
متن کاملEvaluation of Anti-Arthritic and Anti-Inflammatory Activity of Sudard, a Poly Herbal Formulation
Rheumatoid arthritis is a chronic multi-system disease of unknown cause. It affects the people in their prime of life, predominantly between the ages of 20-50 years with unpredictable course. Sudard is used in the ayurvedic system of medicine for the treatment of inflammation and pain associated with rheumatoid arthritis, osteo-arthritis, frozen shoulder, sciatica, ankylosing spondylitis and ...
متن کاملSearch for the Pharmacophore of Histone Deacetylase Inhibitors Using Pharmacophore Query and Docking Study
Histone deacetylase inhibitors have gained a great deal of attention recently for the treatment of cancers and inflammatory diseases. So design of new inhibitors is of great importance in pharmaceutical industries and labs. Creating pharmacophor models in order to design new molecules or search a library for finding lead compounds is of great interest. This approach reduces the overall cost ass...
متن کاملSearch for the Pharmacophore of Histone Deacetylase Inhibitors Using Pharmacophore Query and Docking Study
Histone deacetylase inhibitors have gained a great deal of attention recently for the treatment of cancers and inflammatory diseases. So design of new inhibitors is of great importance in pharmaceutical industries and labs. Creating pharmacophor models in order to design new molecules or search a library for finding lead compounds is of great interest. This approach reduces the overall cost ass...
متن کاملNrf2 deficiency influences susceptibility to steroid resistance via HDAC2 reduction.
Abnormal lung inflammation and oxidant burden are associated with a significant reduction in histone deacetylase 2 (HDAC2) abundance and steroid resistance. We hypothesized that Nrf2 regulates steroid sensitivity via HDAC2 in response to inflammation in mouse lung. Furthermore, HDAC2 deficiency leads to steroid resistance in attenuating lung inflammatory response, which may be due to oxidant/an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Arthritis Research & Therapy
دوره 10 شماره
صفحات -
تاریخ انتشار 2008